Extended Range Electric Vehicle with Driving Behavior Estimation in Energy Management

نویسندگان

  • Korosh Vatanparvar
  • Mohammad Abdullah Al Faruque
چکیده

Battery and energy management methodologies have been proposed to address the design challenges of driving range and battery lifetime in Electric Vehicles (EV). However, the driving behavior is a major factor which has been neglected in these methodologies. In this paper, we propose a novel context-aware methodology to estimate the driving behavior in terms of future vehicle speeds and integrate this capability into EV energy management. We implement a driving behavior model using a variation of Artificial Neural Networks (ANN) called Nonlinear AutoRegressive model with eXogenous Inputs (NARX). We train our novel context-aware NARX model based on historical behavior of real drivers, their recent driving reactions, and route average speed retrieved from Google Maps in order to enable driver-specific and self-adaptive driving behavior modeling and long-term estimation. We analyze the estimation error of our methodology and its impact on a battery lifetimeaware automotive climate control, comparing to the state-ofthe-art methodologies for various estimation window sizes. Our methodology shows only 12% error for up to 30-second speed prediction which is an improvement of 27% compared to the state-of-the-art. Therefore, the higher accuracy helps the controller to achieve up to 82% of the maximum energy saving and battery lifetime improvement achievable in ideal methodology where the future vehicle speeds are known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Battery and generator sizing of series hybrid electric vehicle based on experimental data and standard cycles simulation

Hybrid electric vehicles are getting more attention due to the fuel consumption and emission issue in megacities. Energy management strategy and battery capacity are the primary factors for the energy efficiency of range-extended hybrid electric vehicles. Iran khodro Powertrain Company has unveiled a series of hybrid electric vehicles and is improving its performance constantly. In the present ...

متن کامل

Multi-level Energy Management Strategy for Fuel Cell Vehicle Based on Battery Combined Efficiency and Identification of Vehicle Operation State

The design of energy management strategy is one of the main challenges in the development of fuel cell electric vehicles. The proposed strategy should be well responsive to provide demanded power of fuel cell vehicle for motion, acceleration, and different driving conditions, resulting in reduced fuel consumption, increased lifetime of power sources and increased overall fuel efficiency. The pu...

متن کامل

Antilock Regenerative Braking System Design for a Hybrid Electric Vehicle

Hybrid electric vehicles employ a hydraulic braking system and a regenerative braking system together to provide enhanced braking performance and energy regeneration. In this paper an integrated braking system is proposed for an electric hybrid vehicle that include a hydraulic braking system and a regenerative braking system which is functionally connected to an electric traction motor. In the ...

متن کامل

A Genetic-Fuzzy Control Strategy for Parallel Hybrid Electric Vehicle

Hybrid Electric Vehicles (HEVs) are driven by two energy convertors, i.e., an Internal Combustion (IC) engine and an electric machine. To make powertrain of HEV as efficient as possible, proper management of the energy elements is essential. This task is completed by HEV controller, which splits power between the IC engine and Electric Motor (EM). In this paper, a Genetic-Fuzzy control strategy...

متن کامل

Predictive Control for Energy Management in Allmore Electric Vehicles with Multiple Energy Storage Units

The paper describes the application of Model Predictive Control @fPC) methodologies for application to electric and hybrid-electric vehicle drivetrain formats incorporating multiple energylpower sources. Particular emphasis is given to the co-ordinated management of energy flow from the multiple sources to address issues of extended vehicle range and battery lifetime for allelectric drivetrains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018